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Mining activities produce metal-
contaminated sediments

* Metals enter aquatic ecosystems from mining, ore
processing, and smelting.

e At neutral pH, metals tend to move from water to
sediment:
— settling of particulates (e.g. mine wastes);
— precipitation of insoluble metal species;

— sorption of metals on sediment particles.

» High concentrations of metals in bed sediments can lead to
toxic effects on benthic organisms.
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Applications of sediment toxicity testing

ZUSGS

Ecological risk assessment (e.g., Superfund)
Document ecological injury (e.g., NRDAR)

Pre- and post-remediation assessment

Effluent monitoring/Toxicity ldentification Evaluation
Characterize waste or dredged material

Establish or validate sediment quality guidelines



CERC mining-related sediment studies

Upper Columbia River (WA)
Clark Fork River (MT)
Whiskeytown NRA (CA)

San Carlos Reservoir (AZ)

Upper Animas River (CO)
Tri-State (MO/KS/OK)
Old Lead Belt (MO)
Viburnum Trend (MO)
Palmerton smelter (PA)
Vermont Copper Belt
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Types of sediment test methods

Whole-sediment toxicity testing

— Simulate natural water+sediment exposure

Pore-water toxicity testing

— |solate water exposure route
Elutriate testing (sediment-water suspension)
— Effects of dredging or resuspension

Sediment extracts or leachates

— Source identification; prioritize cleanups



Whole-sediment testing
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* Goal: simulate surficial sediments and overlying water
— Allow development of limited depth gradient (3-4 cm)

— Realistic role of overlying water (water quality, replacement rate)
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Whole-sediment toxicity tests

Direct measure of effects on benthic organisms
Support cause-effect findings

Wide applicability

Limited special equipment is required

Rapid and inexpensive

Legal and scientific precedents

Integrates interactions of contaminant mixtures

Amenable to field validation



Pore-water testing

* Goal: isolate agueous exposure route Daphnid

— Use standard aquatic test organisms

* Advantages:

— Simplicity and sensitivity of test methods

— Compare aqueous vs. solid-phase exposure Fathead Minnow

 Disadvantages

— Difficulty of pore-water collection

— Artifacts of testing with water-column organisms
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Comparison of exposure routes
Palmerton smelter, PA (Besser et al. 2009)
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= Tested surface water, pore water, and sediment with Hyalella
= Toxicity in surface water and pore water from same three sites
= Limited toxicity of whole sediment (one site)

= Consistent with metal inputs from groundwater seepage

®» Fine sediments scarce in contaminated stream reach



Hyalella Ceriodaphnia

Sediment vs. Pore-water tests
Viburnum Trend MO (Besser et al 2008a)
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= Whole-sediment tests with Hyalella (left) identified several toxic sites

= Pore-water tests with Ceriodaphnia (right) were more sensitive, but
had variable survival in reference sites (green)

» Limited tolerance for PW constituents (e.g. ammonia)
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Characteristics of sediment test
organisms

* Sensitivity to toxicants (metals)
* Availability / Ease of culture
 Life cycle / Potential endpoints
* Taxonomic group

* Distribution and abundance

* Ecological importance
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Standard sediment test organisms

Amphipod (Hyalella) Midge (Chironomus) Oligochaete (Lumbriculus)

Alternative test organisms

Mayfly (Hexagenia) Mussel (Lampsilis)
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Sensitivity of benthic taxa to metals
Ni-spiked sediment (Besser, unpublished data)
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*Differences among species:
HA=Hyalella (amphipod)
GP=Gammarus (amphipod)
HS=Hexagenia (mayfly)

CD, CR=Chironomus (midge)
TT=Tubifex (oligochaete)
LV=Lumbriculus (oligochaete)
LS=Lampsilis (mussel)

*Sediment differences
» Metal bioavailability



Differences in sensitivity
Big River, Missouri (Besser et al. 2010)
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= Toxicity to mussels was more closely associated with

= USGS sediment metals. 14



Test endpoints

e Survival

— Severe effect; acute or chronic test
* Growth (length or weight)

— Often more sensitive than survival
* Biomass production

— Sensitive; integrates effects on survival and growth
* Reproduction

— Sensitive but variable; long/complex test methods;

* Bioaccumulation

— Document bioavailability; characterize dietary exposure of fishes
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Hyalella survival and reproduction
Viburnum Trend, MO (Besser et al. 2008a)
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= Survival was high in reference sediments (green); few toxic sites
= Reproduction was sensitive, but varied among reference sites

» Influence of nutrients, organic matter, etc.
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Interpretation of toxicity data

e Control sediments — define test performance
— Quality assurance for studies with field-collected sediment
— Treatment comparisons in experimental studies
* Reference sediments — define ‘baseline’ conditions
— Single site for simple study area (e.g. upstream/downstream)
— Multiple sites (‘reference envelope’) to represent broader area
* Concentration-response relationship

— Experimental studies (e.g., spiking) or field data with gradient of
metal concentrations

— Estimate toxicity value (e.g., LC50, EC20)
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Comparisons to reference site(s)
(Seal et al. 2010; Besser et al. 2010)

Ely Mine, Vermont Old Lead Belt, Missouri
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= Ely Mine, VT: upstream reference sites to match each stream segment

= Big River, MO: multiple reference sites (both upstream and regional)

— Wide range of sediment type from headwaters to mouth
aUSGS




Laboratory-Field Comparisons

* Establish cause-effect relationships

— Community data can be influenced by historic impacts (e.g.
species loss) and habitat alteration

— Lab tests use taxa of interest, minimize influence of habitat

* Estimate site-specific toxicity thresholds
— Use of local species or surrogate

— Simulate ambient water quality

ZUSGS



Laboratory vs. field responses
(Besser et al. 2010; Seal et al 2010, in press)

Old Lead Belt, Missouri Vermont Copper Belt
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= Missouri: reduced mussel growth predicts community impacts
= Vermont streams: gradient of amphipod survival vs. benthos taxa richness

» Acid sites (red): low taxa richness, but sediment not toxic
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Metal bioavailability in sediment

e Estimate available metal fractions

— Selective extractions (e.g., Luoma 1989, Tessier et al. 1984)

* Characterize major metal-binding phases

— Acid-volatile sulfide and total organic carbon (Ankley et al
1996; USEPA 2005)

— AVS strongly limits metal solubility: Ag, Cu, Pb, Cd, Zn, Ni
— TOC has weaker binding but high capacity; more stable

» Allows estimation of pore-water metals (highly bioavailable)

ZUSGS



Metal fractions and bioavailability
Lake Roosevelt, WA (Besser et al. 2008b; Paulson and Cox 2007)

Midge Growth Total Sediment Metals Sediment Pb fractions
1.4 100 100 —
12} L i L i ||
— 7 80
~ 1 80 |- — Zn ]
D 10 T [
£ « T —= Pb 1)
= T X o L —=Cu o~ 6o}
= U * 60 Cd -
=y - o — =
g 0.6 . . é S af
> S 40 - o |
5 04 . wn o
20 F
0.2 1 20 L . L
0.0 0
REF LR7 LR6 LR5 LR4 LR3 LR2 LR1 o = H = LR7 LR6 LR5 LR4 LR3 LR2 LR1 SA8

REF LR7 LR6 LR5 LR4 LR3 LR2 LR1 .
= 4 (Residual)
3 (Sulfide/OM)
C— F2 (Oxide)
F1 (Sorbed)

= Upstream site (LR7) was most toxic and had greatest total metals
= Downstream toxic sites (LR3, LR2) had much lower total metals

» Metals are in easily-extractable fractions (F1 and F2)
a2 USGS
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Metal bioavailability in pore water

 Measure dissolved metal concentrations
— Field: Push-point (large volume) or airstone (small volume)
— Lab: Centrifuge or pressure (large volume)

— Lab or Field: Peeper (small volume)
* Free or labile metal fraction

— Specialized samplers (e.g., DGT)

— Geochemical modeling

— Biotic ligand models (BLM): model metal binding to site of uptake

ZUSGS



Pore-water sampling methods

Push-point Centrifuge

ZUSGS




BLM models for pore water?
(Copper toxicity and DOC; Wang et al 2009)

500 + J:

e Pond

O Eagle Bluffs
> m | uther Marsh
3 A Humic Acid
o 300 o Variable Hardness
8 71 ¢ Reference tests
L
>
O 200
©
(D)
L —
(:,5) - -
e 1004 .-
(D)
=

0 T T T T T T T T T T u 1
0 100 200 300 400 500 600

BLM predicted Cu EC50 (ug/L)

= BLM predicts acute copper toxicity across wide range of water quality

» Few BLM studies with pore-water
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Sediment quality guidelines
(to protect benthic organisms)

1. Empirical SQGs (MacDonald et al. 2000)

» Based on frequency of toxicity in large datasets
(sediments with multiple toxicants)

— Probable Effect Concentration (PEC) is concentration associated
with increased frequency of toxicity

— PEC-Quotient = sediment metal concentration / PEC

e Can sum PEC-Quotients to characterize metal mixtures

ZUSGS



Application of PEC Quotients
(Besser et al. 2010; MacDonald et al 2009)
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= Big River, MO (left): mussel toxicity at Zn-PEQ >1.0

= Tri-States (right): amphipod toxicity at Sum-PEQ near 10
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Sediment quality guidelines (continued)

2. Equilibrium Sediment Benchmarks (ESBs; USEPA 2005)

» Assumes pore water is primary exposure route

— Normalize metals to acid-volatile sulfide (AVS):
* No toxicity if simultaneously-extracted metals (SEM) > AVS

* (SEM = sum of Ag, Cu, Pb, Cd, Zn, and Ni)

— Then normalize to TOC: (SEM-AVS)/TOC
* Range of uncertain toxicity = 130 to 3000 umol/g (USEPA 2005)
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AVS normalization of nickel toxicity

Ni-spiked sediments (Besser, unpublished data)
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= Wide range of toxicity (expressed as total Ni) among eight sediments

= Normalizing to [SEM-AVS] reduces variation among sediments
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Application of sediment ESB
(Tri-State Mining District; MacDonald et al 2009)
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= Hyalella survival corresponds to [(SEM-AVS)/TOC]:
— Narrower range of uncertainty (low AVS, low TOC)
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Take-home points

Sediment toxicity testing has many applications.
Whole-sediment tests are realistic and broadly applicable.
Test with multiple species and endpoints.

Select of appropriate reference site(s).

Validate toxicity vs. evidence of community impacts.

Characterize controls on metal bioavailability.



